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Abstract Cyclic acetals were used as a second co-initiator in three-component

photoinitiating systems. The mixtures of cyanine dye borate ion salt and cyclic

acetals were used to initiate the visible light polymerization of triacrylate monomer

(TMPTA). The kinetics of polymerization was recorded by differential scanning

calorimetry (DSC). The results showed that the addition of cyclic acetals increases

the rate of polymerization (Rp).

Keywords Photoinitiators � Acetals � Free radical polymerization �
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Introduction

Photoinitiated free radical polymerization is a technologically important process

owing to extensive applications in the curing and coating on various materials,

adhesives, printing inks, and photoresists [1, 2]. In these systems, a key to control

the photopolymerization process is photoinitiator, which absorbs light and generates

active radicals to initiate the polymerization [3]. Photoinitiated free radical

polymerization may be initiated by both cleavage (type I) and H-abstraction type

(type II) initiators [1]. The type I photoinitiators undergoes a direct photofragmen-

tation process (a- or less common b-cleavage) upon absorption of light and

formation of initiating radicals capable of start the polymerization chain reaction.

The type II photoinitiators are a second class of photoinitiators based on compounds

whose triplet excited states readily react with hydrogen donors or electron donors,

thereby producing an initiating radical [1].
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Although the rate of the type II photoinitiators are slower than the type I

photoinitiators due to a bimolecular initiation reaction, so far efficient polymeri-

zation, the bimolecular reaction (e.g., H-abstraction or electron transfer process)

must compete with other side reactions, such as the quenching of excited triplet state

by oxygen, by monomer or self quenching with low triplet energy [1, 4]. Therefore,

these systems are more sensitive to oxygen, and polymerization in air may lead to

relatively low curing rates.

Among the most commonly used photoinitiators for free radical polymerization,

bimolecular initiating systems, which undergo intermolecular hydrogen abstraction

process from a co-initiator that contains labile hydrogen [5–7]. Tertiary amines are

the most frequently employed co-initiators due to its higher reactivity. However,

amines are known to mutagenicity and tend to induce substrate corrosion and cause

yellow of the cured film [5]. Other examples of hydrogen donating photoinitiators

are heteroaromatic thiols [8, 9] and cyclic acetals [1, 5]. The acetal function is a

well-known protecting group with unique reactivity [5, 10]. It has been reported that

the monoester radical generated by the photoirradiation of cyclic acetal could

initiate the polymerization of vinyl compounds and methyl methacrylate [1, 11].

Recently, photosensitized hydrogen abstraction from 2-alkyl-1,3-dioxolanes by

triplet state of benzophenone gives the corresponding 1,3-dioxolan-2-yl radicals and

provides a viable alternative for synthesis of 1,4-diketones [1, 12]. More recently,

Shi reported that cyclic acetals were used as hydrogen donors for bimolecular

photoinitiating systems and a natural component 1,3-benzodioxole was used as a co-

initiator for replacing the conventional amine for dental composite [1, 13].

Since the active hydrogen between two alcohoxy groups in the cyclic acetals is

abstractable and could form a radical, Elad and Youssefyeh proposed the

photochemical rearrangement mechanism of 1,3-dioxolane compounds to give

esters is shown in Scheme 1 [1, 14].

To enhance the sensitivity, very often the three-component photoinitiating

systems have been used. In these systems, the third component is usually supposed

to scavenge the chain-terminating radicals that are generated by primary electron

transfer reaction or produce an additional initiating radical (Scheme 2) [15, 16].

Like the two-component systems, the three-component initiators include a light

absorbing moiety, which is typically a dye and an electron donor. The third

component is usually an onium salt. Three-component photoinitiators are extremely

flexible since a wide variety of dyes that can be used. Similarly to the two-

component systems, the selection of the dye determines the active wavelength.

Classes of dyes that have been reported for three-component systems include

ketones, xanthenes, thioxanthenes, coumarins, thiazines, cyanines, hemicyanines,

merocyanines, polycyclic heterocycles and many others [16–27]. These
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Scheme 1 The photochemical rearrangement mechanism of 1,3-dioxolane
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photoinitiating systems have consistently been found to be faster, more efficient,

and more sensitive than their two-component parent photoredox pairs [16, 28, 29].

In this paper, the search for more effective photoinitiating systems of free radical

polymerization of acrylate monomers, composed of cyanine dyes in the three-

component photoinitiating systems is described. The photoinitiators consisting of

these dyes parried with borate anion in the presence of cyclic acetal as a second co-

initiator were investigated through polymerization experiments. In this study, cyclic

acetals were used as hydrogen donors for three molecular photoinitiating systems.

The synergistic effect of cyclic acetals was investigated by differential scanning

calorimetry (DSC) technique.

Experimental

Materials

2-Ethyl-2-(hydroxymethyl)-1,3-propanediol triacrylate (TMPTA) and 1-methyl-2-

pyrrolidinone (MP) were purchased from Aldrich and were used as monomer and

solvent, respectively.

Cyclic acetals: 2-methyl-1,3-dioxolane (K1), 2-methoxy-1,3-dioxolane (K2),

1,3-benzodioxolane (K3), 2-phenyl-1,3-dioxolane (K4), glycerol formal (mixtures

of 40% 4-hydroxymethyl-1,3-dioxolane and 60% 5-hydroxy-1,3-dioxolane) (K5)

were purchased from Aldrich Co. and used without further purification.

The chemical structure of sensitizers and co-initiators are shown in Chart 1.

Cyclic voltammetry

The reduction and oxidation potentials of cyanine dyes and co-initiators were

measured by cyclic voltammetry. An Electroanalitical MTM System model EA9C-

4z (Krakow, Poland), equipped with a small-volume cell was used for the

measurements. A 1 mm platinum disc electrode was applied as the working

electrode. A Pt wire constituted the counter electrode, and an Ag–AgCl electrode

served as the reference electrode. The supporting electrolyte was 0.1 M

Component No. 1
light

Excited Component No. 1

Component No. 2

Initiating radical Chain terminating radical

Component No. 3
Scavenging the terminating radical or producing
one more initiating radical

Scheme 2 The general mechanism the free radicals formation in three-component photoinitiating system
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tetrabutylammonium perchlorate in dry acetonitrile. The solution was deoxygenated

by bubbling argon gas through the solution. The potential was swept from -1.6 to

1.6 V and with the sweep rate of 500 mV/s to record the current–voltage curve.

Polymerization kinetics

Photoinitiated polymerization rate (Rp) profiles were determined by a differential

scanning calorimetry (DSC), under isothermal conditions at room temperature using

a photo-DSC apparatus constructed on the basis of a TA Instruments DSC 2010

Differential Scanning Calorimeter. The 0.035 ± 0.002 g of sample was polymer-

ized in open aluminum pans having the diameter of 6.6 mm. The irradiations of the

polymerizations were carried out with Air-cooled Ion Laser Systems model

177-G01 (488 and 514 nm) (Spectra-Physics, USA). The average power of

irradiation was 20 mW/0.196 cm2 at 514 nm. The light intensity was measured by a

Coherent Model Fieldmaster power meter.

A polymerization solution was composed of 1 mL of 1-methyl-2-pyrrolidinone

(MP) and 9 mL of 2-ethyl-2-(hydroxymethyl)-1,3-propanediol triacrylate

(TMPTA). The cyanine dyes concentrations used in experiments were

7.5 9 10-4 M, 1 9 10-3 M, and 5 9 10-3 M, respectively. The co-initiators

concentrations were varied from 1 9 10-3 M to 1 9 10-1 M. The monomer was

used without purification. As a reference sample, a polymerizing mixture containing

cyanine iodide (dye without a co-initiator) was used. The polymerizing mixture was
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Chart 1 The chemical structure of sensitizers and co-initiators tested
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not deaerated. In order to reduce the effect of diffusion-controlled termination, the

effect of a network formation, the Norrish–Troomsdorf effect and radicals trapping

effect, the initial rates of polymerization were taken into account for further

consideration. The reproducibility of the results was about ±3%. For computations,

the heat of polymerization was taken to be 78 kJ/mol per for acrylic double bonds.

Results and discussion

The kinetics of polymerization: efficiency of two- and three-component

photoinitiating systems

The photoinitiating systems composed of cyanine dye as a photosensitizer with

various co-initiators (borate salt and cyclic acetals) were used for the initiation of

free radical polymerization. The polymerization solution consisted of 7.5 9 10-4 M

(TS1), 1 9 10-3 M (P3), 5 9 10-3 M (SH1) of sensitizer (as an iodide or

n-butyltriphenylborate salt), and cyclic acetals with concentrations varied from

1 9 10-3 M to 1 9 10-1 M. The polymerization process was initiated by

irradiation at 514 nm. At this wavelength only a sensitizer absorbs the light.

Cyanine dye borate salts are the most prominent representatives of visible light

bimolecular photoinitiating systems [30–32]. Various factors had great influence on

the rate of polymerization such as a chemical structure of the dye, chemical

structure of co-initiator, the light intensity, etc. [26].

The comparison of the polymerization rates observed for cyanine–borate pair and

cyanine–borate–cyclic acetal triplets indicates that the lowest rates of polymeriza-

tion for cyanine–borate photoredox pair were observed.

For comparison of the photoinitiating abilities of tested photoinitiatng systems,

the kinetic curves obtained during the photoinitiated polymerization of TMPTA-MP

(9:1) mixture photoinitiated by two-component photointiating systems composed of

cyanine borates, under irradiation with a visible light are shown in Fig. 1 for

illustration.

As it was shown below, the addition of cyclic acetals resulted in a acceleration of

the polymerization process.

The kinetic curves obtained for the photoinitiated polymerization of TMPTA-MP

(9:1) mixture photoinitiated by cyanine borates in a presence of cyclic acetals, under

irradiation with a visible light are shown in Fig. 2 for illustration.

From the data presented in Figs. 1 and 2 it is clear that the three-component

systems dye/borate salt/cyclic acetal exhibit the highest reactivity. The rates of

polymerization (Rp) are 1.5–2 times higher than those observed for two-component

dye/borate salts photoinitiating systems.

The couple SH1B2 was the worst photoinitiating system used. However, addition

of cyclic acetal into SH1B2 considerably enhanced the efficiency of the

polymerization that became as good as those obtained in the presence of other

dyes under the identical conditions (sevenfold increase in the polymerization rate,

Fig. 2).
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Fig. 1 Family of kinetic curves recorded during the measurements of the flow of heat emitted during the
photoinitiated polymerization of the TMPTA/MP (9/1) mixture initiated by two-component
photoinitiating systems composed of cyanine dye n-butyltriphenylborate marked in the figure. The
photoinitiators concentrations were 7.5 9 10-4 M (TS1B2), 1 9 10-3 M (P3B2), and 5 9 10-3 M
(SH1B2), respectively. Ia = 20 mW/0.196 cm2
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Fig. 2 Family of kinetic curves recorded during the measurements of the flow of heat emitted during the
photoinitiated polymerization of the TMPTA/MP (9/1) mixture initiated by three-component
photoinitiating systems composed of cyanine dye n-butyltriphenylborate in presence of 2-methyl-1,3-
dioxolane, marked in the figure. The acetal concentration was 1 9 10-2 M, Ia = 20 mW/0.196 cm2
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The photoinitiating efficiency of tested three-component systems depends on the

concentration of both co-initiators (borate salt and cyclic acetal). Figure 3 illustrates

2-methyl-1,3-dioxolane (K1) concentration effect on the rate of photoinitiated

polymerization.

The increase of the concentration of cyclic acetal from 0 to 0.1 M caused the

increase of the rate of polymerization (Rp) about two times.

The next factor, which has significant influence on the photoinitiating ability of

three-component photoinitiating systems is the structure of a second co-initiator.

The effect of the structure of cyclic acetal on the rate of free radical polymerization

photoinitiated by cyanine borate salt is shown in Fig. 4.

The relative rate of hydrogen atom abstraction by photogenerated radicals from a

variety of cyclic ethers, acetals and orthoformates had been investigated using EPR

spectroscopic technique [5, 33]. There was pronounced stereoelectronic effect,

which produced high rates of abstraction from cyclic acetal carbon. Thus, methyl

group attached to the acetal carbon atom exerted a significant effect on the hydrogen

abstraction. However, the activating effect of phenyl group was proved to be smaller

than that of methyl group, probably because of the delocalization of the unpaired

electron on to the unsaturated group came at the expense of planarization at acetal

carbon [5, 34]. In addition to the stereoelectronic factor, molecular conformation

also affected the abstraction rate. For example, Malatesta and Ingold [33] found that

the more mobile envelope conformation of five-numbered cyclic acetals had higher

hydrogen abstraction rate than that of six-numbered ones. Ouchi and Hamada [11]

also reported the results that the strain of ring could affect the ability to promote the

polymerization.
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Fig. 3 Effect of 2-methyl-1,3-dioxolane (K1) concentration on the rate of free radical polymerization of
TMPTA/MP polymerizing mixture initiated by three-component photoinitiating system (P3B2).
Concentration of dye = 1 3 10-3 M. Light intensity equal 20 mW/0.196 cm2
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In this study, 2-methyl-1,3-dioxolane (K1) had relatively higher rate of

polymerization Rp, than that of 2-phenyl-1,3-dioxolane (K4), which was consistent

with the reported rate of hydrogen abstraction from cyclic acetals. Formal glycerol

(K5) with 60% six-numbered cyclic acetal had lower reactivity. 1,3-Dioxolane (K3)

indicated an effective second co-initiator for cyanine dye/borate salt photoinitiating

systems.

Summarizing, the addition of cyclic acetal to the two-component photoinitiating

system induced a strong synergic effect (Figs. 2, 3, and 4). However, the efficiency

of the cyanine dye/borate salt/cyclic acetal three-component system is not a simple

sum of the efficiencies of the two-component photoinitiating system: dye/borate salt

or dye/acetal systems acting separately. Therefore, it seems that the improvement in

photoinitiation for the system cyanine dye/borate/cyclic acetal in comparison to

cyanine/borate salt is a result of secondary reactions between cyclic acetal and the

species deriving from the first step of interaction, e.g., the reaction between the

excited singlet state of the dye and borate salt.

It is well-known that the electron transfer reaction can be depicted according to

Scheme 3.

In general, the Rehm–Weller equation is used for evaluating the possibility of an

electron transfer reaction. The free energy change (DGel) of the reactions can be

calculated by using the following equation (Eq. 1) [36]:

DGel ¼ Eox D/D�þð Þ � Ered A��=Að Þ � E00 � Ze2=ea ð1Þ

where:
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Fig. 4 Effect of cyclic acetals structure on the rate of free radical polymerization of TMPTA:MP
polymerizing mixture initiated by three-component photoinitiating system (SH1B2). Concentration of
dye = 5 3 10-3 M. Light intensity equal 20 mW/0.196 cm2
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Eox D/D�þð Þ is the oxidation potential of the electron donor, Ered A��=Að Þ is the

reduction potential of the electron acceptor, E00 is the energy of the excited state

involved in electron transfer reaction and Ze2=ea is the Coulombic energy

associated with the process.

Since the last term is relatively small in polar or medium polarity media, it can be

neglected in the estimation of DGel. The Eox and Ered of both photoredox pair

components were determined from the cyclovoltameric measurements in acetoni-

trile and are summarized in Table 1.

For three-component system theoretically following primary reactions are

possible (Eqs. 2–4):

Dye� þ B2! Dye� þ B2 ð2Þ
Dye� þ K! Dye�þ þ K�� ð3Þ
Dye� þ K! Dye� þ K�þ ð4Þ

As it is seen, from the electrochemical measurements only electron transfer from

borate anion to the excited singlet state of cyanine dye is possible reaction (Eq. 2).

The calculated DGel for this reaction are in the range from -0.02 to 0.094 eV.

Table 1 The oxidation and

reduction potentials and the

excited singlet state energy of

tested compounds

Compound Ered (eV) Eox (eV) E00 (eV)

P3 -1.30 1.0 2.08

SH1 -1.09 – 2.156

TS1 -1.02 – 2.164

B2 -1.00 1.16

K1 -1.18 –

K2 -1.07 –

K3 -1.02 –

K4 -1.055 –

K5 -1.03 –

ksep

kbet

D  +  A
hν

+  A
ket

D
s

(D + )A -
+D + A -

ksep

kbet

D  +  A
hν

+   A
ket

D
s

(D + )A -
+D + A -

Scheme 3 The mechanism of an electron transfer processes. D is an electron donor, A is an electron
acceptor, s is the spin multiplicity of the excited state (s = 1 or 3), ket, kbet, and ksep are the rate constants
of electron transfer, back electron transfer, and ion separation, respectively [35]
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Because tested dyes do not undergo electrochemical oxidation, the electron

transfer from the excited singlet state of the dye to the cyclic acetal is not possible,

leading to oxidation of the dye and reduction of cyclic acetal (Eq. 3). From the same

reason, the electron transfer process from the ground state of cyclic acetal on the

excited singlet state of cyanine dye could not occur (Eq. 4).

Basing on this, one can conclude that the primary process is an electron transfer

from borate anion to the excited state of cyanine dye, leading to the formation of

cyanine dye radical and boranyl radical.

All results, reveal that an effective interaction can take place between cyclic

acetal and the products formed as a result of primary process (cyanine dye radical,

boranyl radical). If the electron transfer reaction from the cyclic acetal to excited

state of the dye occurs, leading to the formation of radicals capable of initiating

polymerization of TMPTA we should observe the initiation of free radical

polymerization of TMPTA by two-component photoinitiating systems composed of

cyanine dye/cyclic acetal. In the present case no radicals capable of initiating

polymerization of TMPTA are present. Thus, this process does not play a significant

role in photoinitiation.

There are at least two possible explanations of the observed phenomena. The first

reasonable hypothesis suggests, that the synergic effect of the cyanine dye/borate

salt/cyclic acetal system behavior could be explained by an electron transfer

interaction of the reduced dye (dye radical), boranyl radical or butyl radical (product

decomposition of boranyl radical) with the cyclic acetal. Cyanine dye radical is

known as weak terminator of the growing macromolecular chains. However, it

reacts efficiently with an alkyl radical [37–39]. The linear relationship between the

rate of polymerization and the square root of the light intensity absorbed confirms

this postulate, suggesting that photoinitiated polymerization of the system proceeds

by a conventional mechanism in which bimolecular termination occurs by the

reaction between two macroradicals. This allows concluding that the free radicals

formed from cyanine radical do not act as terminator of polymer chains [40].

Dye + Dye

+Dye R DyeR bleaching product

Such interaction can sharply decrease an efficiency of initiation process, and this

in turn, causes a decrease in observed rate of polymerization. The possible

explanation of the observed synergic effect for three-component system may

consider possible redox reaction between cyanine dye radical, boranyl radical or

butyl radical and cyclic acetal. Similar reaction was well documented for dye

radical and N-methoxypyridine cations or N-methypicolinium ester [38, 41]. The

second explanation considers the interactions between the cyanine dye radical and

cyclic acetal can strongly reduce a terminating effect caused by dye radical, or

interaction between cyanine dye radical, boranyl radical or butyl radical and cyclic

acetal and additionally to form a new initiating radicals as a results of hydrogen

abstraction. Similar observations were observed for three-component photoinitiating

systems composed of cyanine dye/triazine/thiol [42].
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Based on the discussion presented above, we suggest that the radical formation

reactions proceed as illustrated in Scheme 4.

The photoexcited dye molecule encounters n-butyltriphenylborate anion and

accepts an electron from borate anion, forming boranyl radical, and cyanine radical.

In the next step the hydrogen abstraction from cyclic acetal to free radicals, formed

in primary photochemical process occurs.

Conclusions

Cyclic acetals showed the potential as second co-initiators for three-component

photoinitiating systems for triacrylate monomer (TMPTA). The photoinitiation ability

of three-component photoinitiating systems composed of cyanine dye/borate salt/cyclic

acetal depends on the chemical structure and concentration of cyclic acetals. The initial

rates of polymerization are increasing as the concentration of acetal increases. The

addition of cyclic acetal to the well-known two-component photoinitiation system

caused in increasing of the rate of free radical polymerization of about two times.
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